Drop impact and capture on a thin flexible fiber.
نویسندگان
چکیده
When a drop impacts a thin fiber, a critical impact speed can be defined, below which the drop is entirely captured by the fiber, and above which the drop pinches-off and fractures. We discuss here the capture dynamics of both inviscid and viscous drops on flexible fibers free to deform following impact. We characterize the impact-induced elongation of the drop thread for both high and low viscosity drops, and show that the capture dynamics depends on the relative magnitudes of the bending time of the fiber and deformation time of the drop. In particular, when these two timescales are comparable, drop capture is less prevalent, since the fiber rebounds when the drop deformation is maximal. Conversely, larger elasticity and slower bending time favor drop capture, as fiber rebound happens only after the drop has started to recoil. Finally, in the limit of highly flexible fibers, drop capture depends solely on the relative speed between the drop and the fiber directly after impact, as is prescribed by the momentum transferred during impact. Because the fiber speed directly after impact decreases with increasing fiber length and fiber mass, our study identifies an optimal fiber length for maximizing the efficiency of droplet capture.
منابع مشابه
Drop impact on a flexible fiber.
When droplets impact fibrous media, the liquid can be captured by the fibers or contact then break away. Previous studies have shown that the efficiency of drop capture by a rigid fiber depends on the impact velocity and a threshold velocity was defined below which the drop is captured. However, it is necessary to consider the coupling of elastic and capillary effects to achieve an improved und...
متن کاملCapturing drops with a thin fiber.
We study experimentally the dynamics of drops impacting horizontal fibers and characterize the ability of these objects to capture the drops. We first show that a drop larger than a critical radius cannot be trapped by a fiber whatever its velocity. We determine this critical size as a function of the fiber radius. Then we show that for smaller drops, different situations can occur: at a low im...
متن کاملEulerian Lagrangian Simulation of Particle Capture and Dendrite Formation on Binary Fibers
The capture efficiency of the small aerosol particle is strongly influenced by the structure of fibrous layers. This study presents particle deposition and dendrite formation on different arrangements of binary fibers. 2-D numerical simulation is performed using the open source software of OpenFOAM. In the instantaneous filtration of a single fiber, obtained results are in good agreement with th...
متن کاملDynamics of Droplets
Capturing non-Newtonian power-law drops by horizontal thin fibers with circular cross‐ section in a quiescent media can be studied in this chapter. The case is simulated using volume of fluid (VOF) method providing a notable reduction of a computational cost. Open source OpenFOAM software is applied to conduct the simulations. This model is an extension of the one developed earlier by Lorenceau...
متن کاملStudy of Impact Damage in PVA-ECC Beam under Low-Velocity Impact Loading Using Piezoceramic Transducers and PVDF Thin-Film Transducers
Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2016